GIT repositories physdays / master poster.tex
master

Tree @master (Download .tar.gz)

poster.tex @masterraw · history · blame

\documentclass[a0paper,portrait,fontscale=0.252,margin=44mm]{baposter}

\usepackage[english]{babel}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage[utf8]{inputenc}
\usepackage{helvet}
\usepackage{graphicx}
\usepackage{wrapfig}
\usepackage{float}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{pgfplots}
\pgfplotsset{compat=1.3}
\pgfplotsset{every axis/.append style={
  legend style={font=\scriptsize,line width=1pt,legend image post style={xscale=0.3}},
}}




%%% Global Settings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\graphicspath{{figures/}}  % Root directory of the pictures
\tracingstats=2         % Enabled LaTeX logging with conditionals

%%% Color Definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\definecolor{TUTred}{RGB}{235,97,2}
\definecolor{TUTorange}{RGB}{251,184,0}
\definecolor{TUTyellow}{RGB}{222,222,70}

\definecolor{TUTgreen}{RGB}{180,220,0}
\definecolor{TUTblue}{RGB}{70,221,255}
\definecolor{TUTgray}{RGB}{225,225,225}

\definecolor{TUTh1}{RGB}{234,103,12}
\definecolor{TUTh2}{RGB}{203,0,58}
\definecolor{TUTh3}{RGB}{226,0,120}
\definecolor{TUTh4}{RGB}{132,28,120}
\definecolor{TUTh5}{RGB}{0,65,121}

\definecolor{bordercol}{RGB}{40,40,40}
\definecolor{headercol1}{RGB}{249,176,22}
\definecolor{headerfontcol}{RGB}{0,0,0}
\definecolor{boxcolor}{RGB}{212,221,87}

                                          

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Document Start %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{document}

% Tehään vasempaan reunaan enemmän tilaa
%\setlength{\oddsidemargin}{-13mm}
\setlength{\oddsidemargin}{-13mm}

% TUT-fontit
\renewcommand{\familydefault}{\sfdefault}
\fontfamily{\sfdefault}


%%% Setting Background Image %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\background{
  \begin{tikzpicture}[remember picture,overlay]
    \draw (current page.south west)+(0ex,0ex) node[anchor=south west,inner sep=0cm]
    {\includegraphics[height=1.08\textheight]{sininen.pdf}};
  \end{tikzpicture}
}

%%% General Poster Settings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Eye Catcher, Title, Authors and University Images %%%%%%%%%%%%%%%%%%%%%%
\begin{poster}{%%% Asetukset
    eyecatcher=false,
    borderColor=bordercol,
    headerColorOne=TUTblue,%TUTgreen
    headerColorTwo=white,
    headerFontColor=headerfontcol,
    boxColorOne=white,
    boxColorTwo=TUTblue,
    headerfont=\Large\bf,
    textborder=none,
    background=user,
    headerborder=none,
    headershade=plain,
    headershape=rounded,
    boxshade=none,
    columns=3,
    headerheight=40mm,
    grid=false,
}
{%%% Eyecatcher
}
{%%% Otsikko
  \vspace{22mm}
  \fontseries{bx}\selectfont
  \huge\bf Measuring Zeta Potential of High Density Lipoprotein Using Molecular Dynamics Simulations 
}
{%%% Authors
  \normalsize\bf\underline{H. Mikkolainen}, T. Karilainen, H. Martinez-Seara, and I. Vattulainen\\
  Department of Physics, Tampere University of Technology  
}
{%%% University logo
}



%%% Posteriboxit %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% HDL
\begin{posterbox}[name=hdl,span=2,column=0,row=0]{HDL}

  \begin{minipage}{0.65\textwidth}
    \begin{itemize}[leftmargin=3mm]
      \item High Density Lipoprotein (HDL)  is the  smallest of the five major
	groups of lipoproteins which play essential role in plasma lipid
	transport.
      \item HDL transports cholesterol from blood vessels to liver for
	excretion and it is usually called ``good cholesterol''. 
      \item We have done MD simulations of HDL in NaCl solution using OPLS-AA force field and one interesting property to be quantified is the $\zeta$-potential.
    \end{itemize}
  \end{minipage}\hfill
  \begin{minipage}{0.34\textwidth}
    \centering
      \includegraphics[width=0.90\textwidth]{hdl3.png}
  \end{minipage}

\end{posterbox}





%%% Zeta-pot
\begin{posterbox}[name=zeta,span=1,column=2,row=0]{Zeta Potential}

  \begin{itemize}[leftmargin=3mm]
    \item Zeta potential ($\zeta$-potential) is the electrical potential on the slipping plane of
      electrical double layer around a charged particle.
  \end{itemize}
  \begin{center}
      %\vspace{-3mm}
    \includegraphics[width=0.99\textwidth]{zeta.pdf}
    {\tt\small (Source: Wikipedia. Image by Larryisgood)}
  \end{center}
  \begin{itemize}[leftmargin=3mm]
    \item The magnitude of the $\zeta$-potential gives an indication of stability of
      a colloidal system.
    \item $\zeta$-potential can can be determined experimentally by measuring Electrophoretic mobility.
  \end{itemize}

\end{posterbox}




%%% Pupu
%\begin{posterbox}[headerColorOne=white,name=pupu,span=1,column=2,below=md]{}
  %\vspace{-6mm}
  %\begin{center}
    %\includegraphics[width=0.70\textwidth]{pupu2.jpg} \\
    %\begin{scriptsize}
      %\copyright {\tt Tomo.Yun (www.yunphoto.net/en/)} \\
    %\end{scriptsize}
      %\vspace{1mm}
      %\small HDL:n vaikutuksien tutkimiseen on käytetty koe-eläiminä mm. jäniksiä \cite{pupu}
  %\end{center}
  %\vspace{-3mm}
%\end{posterbox}




%%% Slipping plane
\begin{posterbox}[name=slip,span=2,column=0,below=hdl]{Slipping Plane}


  \begin{minipage}{0.54\textwidth}
    \begin{itemize}[leftmargin=3mm]
      \item According to Debye-Hückel theory (DH) the radial distribution of freely moving counter ions around charged particle is $Ae^{-Br}/r+C$. \cite{doi:10.1021/jp301094m}
      \item When DH curve is fitted to measured distribution of counter ions (Na$^{+}$) the point where these two curves emerge is the {\it slipping plane}.
    %erkanemis kohdassa, eli n. $6.4 \; nm$.
    \end{itemize}
  \end{minipage}\hfill
  \begin{minipage}{0.45\textwidth}
    \begin{flushright}
      \begin{tikzpicture}
        \begin{small}
          \begin{axis}[
              xmin=5, xmax=8.5, ymin=1.03, ymax=1.17,
              width=6.2cm, height=4.60cm,
              xlabel={r [nm]},
              ylabel={g(r)},
              ylabel shift={1.5mm},
              xticklabel shift={1.5mm},
              %yticklabel shift={1.5mm}
              ytick=\empty,
              legend style={draw=none}
            ]
            \addplot[mark=none,black] table[comment chars={@,\#}, x index=0, y index=1] {figures/rdf-dh.xvg};
            \addlegendentry{Na$^+$ RDF}
            \addplot[mark=none,red] table[comment chars={@,\#}, x index=0, y index=2] {figures/rdf-dh.xvg};
            \addlegendentry{fitted DH}
          \end{axis}
        \end{small}
      \end{tikzpicture}
    \end{flushright}
  \end{minipage}

\end{posterbox}





%%% Lähteet
\begin{posterbox}[headerColorOne=white,name=lahteet,span=3,column=0,above=bottom]{}
  \vspace{15mm}
  \begin{flushright}
    \begin{minipage}[t]{0.70\linewidth}
      \bibliographystyle{abbrv} 
      \renewcommand{\section}[2]{} % remove header
      {\bf References} % header using custom font
      \begin{small}
        \bibliography{ref}
      \end{small}
      \vspace{-3mm}
    \end{minipage}
  \end{flushright}
\end{posterbox}




%%% EP
\begin{posterbox}[name=tulokset,span=2,column=0,below=slip]{Electrostatic potential}

  \begin{minipage}{0.42\linewidth}
    \begin{tikzpicture}
      \begin{small}
	\begin{axis}[
	    xmin=5, xmax=8.5, ymin=-5, ymax=29,
	    width=5.7cm, height=4.3cm,
	    xlabel={r [nm]},
	    xlabel shift ={1mm},
	    ylabel={Potential [mV]},
	    ylabel shift ={1mm},
	    xticklabel shift={1.5mm},
	    yticklabel shift={1.5mm},
	    title={Electrostatic Potential},
            legend style={draw=none}
	  ]
	  \addplot[mark=none,black] table[comment chars={@,\#}, x index=0, y index=1] {figures/epot005.xvg};
	  \draw[red,-,dashed] (axis cs:6.4,40) -- (axis cs:6.4,-40);
	  %\addlegendentry{Na$+$ RDF}
	\end{axis}
      \end{small}
    \end{tikzpicture}
    \begin{itemize}[leftmargin=3mm]
      \item When electrostatic potential around HDL is calculated we see that the potential on slipping plane is close to zero.
      \item According  to experimental results the $\zeta$-potential of HDL would be $-12,4 \; mV$. \cite{hdlzeta}
    \end{itemize}
  \end{minipage}\hfill
  \begin{minipage}{0.54\linewidth}
  \begin{flushright}
    \begin{tikzpicture}
      \begin{small}
	\begin{axis}[
	    %xmin=5, xmax=8.5, ymin=-5, ymax=30,
	    xmin=3.5, xmax=7,
	    ymin=-40, ymax=40,
	    %ymin=-40, ymax=40,
	    width=6.1cm, height=6cm,
	    xlabel={r [nm]},
	    xlabel shift ={1mm},
	    ylabel={Charge [e]},
            ylabel shift ={-1mm},
	    xticklabel shift={1.5mm},
	    yticklabel shift={1.5mm},
	    title={Cumulative Charge},
            %legend pos={north west},
            legend style={at={(1.0,1.0)},anchor=north west},
            legend style={draw=none}
	  ]
	  \addplot[mark=none,black] table[comment chars={@,\#}, x index=0, y index=1] {figures/charge005};
          \addplot[mark=none,yellow] table[comment chars={@,\#}, x index=0, y index=1] {figures/charge_co};
          \addplot[mark=none,green] table[comment chars={@,\#}, x index=0, y index=1] {figures/charge_popc};
          \addplot[mark=none,magenta] table[comment chars={@,\#}, x index=0, y index=1] {figures/charge_protein};
          \addplot[mark=none,red] table[comment chars={@,\#}, x index=0, y index=1] {figures/charge_na};
          \addplot[mark=none,blue] table[comment chars={@,\#}, x index=0, y index=1] {figures/charge_cl};
	  \addplot[mark=none,cyan] table[comment chars={@,\#}, x index=0, y index=1] {figures/charge_water005};
          \addlegendentry{system}
          \addlegendentry{CO}
          \addlegendentry{POPC}
          \addlegendentry{Protein}
          \addlegendentry{Na$+$}
          \addlegendentry{Cl$-$}
          \addlegendentry{water}
	\end{axis}
      \end{small}
    \end{tikzpicture}
    \begin{itemize}[leftmargin=3mm]
      \item Cumulative charge of the system shows that the net charge of HDL is positive although the apolipoprotein of HDL has negative charge. 
    \end{itemize}
  \end{flushright}
  \end{minipage}

\end{posterbox}


%%% Conclusions
\begin{posterbox}[name=conclusions,span=1,column=2,below=zeta]{Conclusions}
    \begin{itemize}[leftmargin=3mm]
      \item The computationally determined value of $\zeta$-potential differs from experimentally measured value.
      \item Positive effective charge of HDL is probably caused by strong orientation of water molecules on the surface of the particle.
      %\item In addition to strongly oriented water molecules, 
      \item Also too strong attraction between lipids and ions in the force field is a possible reason.
      %\item Further research must be done to 
    \end{itemize}




    \begin{flushright}
      \vspace{5mm}
      {\tt heikki.mikkolainen@tut.fi }
      {\Large\tt www.tut.fi/biophys }
    \end{flushright}

\end{posterbox}




\end{poster}
\end{document}